Sabtu, 20 Oktober 2018

ORGANISASI KOMPUTER DASAR

ORGANISASI KOMPUTER DASAR

Organisasi Komputer mempelajari bagian yang terkait dengan unit unit operasional komputer dan hubungan antara komponen sistem komputer.

ORGANISASI KOMPUTER DASAR

A. KOMPONEN SISTEM
Sebuah komputer moderen/digital dengan program yang
tersimpan di dalamnya merupakan sebuah system yang
memanipulasi dan memproses informasi menurut kumpulan
instruksi yang diberikan. Sistem tersebut dirancang dari
modul-modul hardware seperti :

1. Register
2. Elemen aritmatika dan logika
3. Unit pengendali
4. Unit memori
5. Unit masukan/keluaran (I/O)

Komputer dapat dibagi menjadi 3 bagian utama, yaitu :
1. Unit pengolahan pusat (CPU)
2. Unit masukan/keluaran (I/O)
3. Unit memori

Organisasi dasar dari sebuah komputer dapat ditunjukan pada
blok diagaram pada gambar di bawah ini :
bus data bus data
bus alamat
bus kendali bus kendali

Keterangan :
CPU mengendalikan urutan dari semua pertukaran informasi
dalam komputer dan dengan dunia luar melalui unit I/O.
Sedangkan unit memori terdiri dari sejumlah besar lokasi
yang menyimpan program dan data yang sedang aktif
digunakan CPU. Ketiga unit tersebut dihubungkan dengan
berbagai macam bus.
Input/Output
(I/O) Unit
Central
Processing
Unit
(CPU)
Unit
Memori
Utama

• Bus adalah sekelompok kawat atau sebuah jalur fisik yang
berfungsi menghubungkan register-register dengan unitunit
fungsional yang berhubungan dengan tiap-tiap modul.
Informasi saling dipertukarkan di antara modul dengan
melalui bus.

B. OPERASI MIKRO
Adalah operasi tingkat rendah yang dapat dilakukan oleh
komputer atau CPU sehingga fungsi-fungsi operasi akan
dihasilkan untuk memindahkan data antar register.
Salah satu cara dalam melakukan operasi mikro tersebut
dengan menggunakan bahasa transfer register / Register
Transfer Language (RTL).
RTL adalah sebuah bahasa yang digunakan untuk
menjabarkan atau melaksanakan operasi mikro.
Untuk mengungkapkan bahasa RTL ini dapat digunakan notasi
RTL yang merupakan aturan penulisan pemberian instruksi
RTL. Contoh notasi tersebut antara lain :

• Notasi RTL untuk mentransfer isi register A ke B
B (A)
Isi dari register
A
• Notasi RTL untuk mentransfer bagian-bagian dari register
(field). Sebuah field pada sebuah register dinotasikan
dengan menggunakan tanda kurung.
Field AD di register IR ditransfer ke register PC
PC (IR[AD])
• Notasi RTL untuk mentransfer field AD dari register IR ke
register PC
R1 [0..3] (X)
Isi register X ditransfer ke bit 0 sampai 3 pada register
R1, yang berari X mempeunyai panjang bit adalah 4
Selain itu, dapat juga dipakai konstanta pada sisi sebelah
kanan tanda panah.
L 5
Artinya simpan nilai 5 pada register L
• Notasi RTL untuk menggambarkan berbagai macam
operasi-mikro Aritmatika.
A3 (A1) + (A2)
Artinya isi register A1 dan A2 dijumlahkan dengan
menggunakan sirkuit adder biner dan hasil jumlahnya
ditransfer ke register A3.
Namum apabila dilakukan pengulangan penjumlahan
akan menyebabkan overflow dan untuk menampung
overflow tersebut digunakan register 1-bit yaitu V sebagai
register overflow serta pelengkap A3.
VA3 (A1) + (A2)
Contoh operasi aritmatika lainnya :
A (A) + 1 ; increment isi A oleh 1
A (A) - 1 ; decrement isi A oleh 1
A (A) ; menurunkan
komplemen A
A (A) + B +1 ; lakukan A – B dengan
menambahkan
komplemen 2’s ke A
• Notasi RTL untuk menggambarkan berbagai macam
operasi-mikro Logika.
C (A) OR (B)
Artinya bahwa logika OR dari sis register A dan B
ditransfer ke register C. Begitu juga dengan operasi AND
C (A) AND (B)
• Notasi RTL untuk menggambarkan transfer data ke dan
dari word memori.
Dalam RTL, unit memori utama pada komputer dianggap
sebagai M dan menulis word ke-i dalam memori menjadi
M[i].
Proses pembacaan memori (memory read) adalah :
B (M[A])
Proses penulisan memori (memory write) adalah :
(M[A]) B
artinya word memori yang alamatnya ditunjukkan oleh
register A ditransfer ke atau dari register B dalam CPU.
• Notasi RTL digunakan untuk transfer register hanya pada
kondisi tertentu, hal tersebut dilakukan dengan 2 cara :

1. Menggunakan pernyataan kondisi logika (logical
condition)
IF (V) > (W) THEN Q 0
Men-set 0 ke register Q hanya jika nilai register V lebih
besar dari nilai register W.
Note :
Pernyataan kondisi logikal hanya didefinisikan untuk IF
– THEN dan tidak untuk ELSE.
2. Menggunakan pernyataan kondisi pengendalian (control
condition)
t0 (c1 + c2) : X (Y)
dengan metode ini, kondisinya merupakan fungsi logikal
dari variabel biner yang mengatur input register.
Fungsi-fungsi ini dijabarkan disebelah kiri dari operasi
transfer register dan diikuti oleh tanda titik dua.

Keterangan contoh di atas :
Isi Y dipindahkan ke X hanya jika t0 bernilai 1 dan salah
satu c1 atau c2 juga bernilai 1
Namun jika kondisi tertentu adalah 0, simbol utama (‘)
harus digunakan sehingga pernyataan RTL – nya adalah
:
t’0 (c1 + c2) : X (Y)
maka transfer hanya akan terjadi jika t0 bernilai 0 dan
salah satu c1 atau c2 juga bernilai 1.
SIC (SIMPLIFIED INSTRUCTIONAL COMPUTER)
Komputer yang didasarkan pada SIC ini merupakan komputer yang
termasuk dalam perancangan arsitektur yang sangat sederhana dan
komputer ini dipersembahkan oleh BECK (1985).
Struktur Mesin SIC terdiri dari :

1. CPU
2. Unit memori
3. Minimal satu unit prinati I/O

Untuk CPU yang digunakan terdiri dari 13 register khusus, seperti
yang ada pada table di bawah ini.
NO REGISTER UKURAN (bit) NAMA
1 A 24 Accumulator
2 X 15 Register Index
3 L 15 Register Linkage
4 PC 15 Program Counter
5 IR 24 Instruction Register
6 MBR 24 Memori Buffer Register
7 MAR 15 Memori Address Register
8 SW 11 Status Word
9 C 2 Counter
10 INT 1 Interrupt Flag
11 F 1 Fetch Cycle Flag
12 E 1 Execute Cycle Flag
13 S 1 Start / Stop Flag

Format instruksi pada mesin SIC :
23 161514 0
OP IX AD

Keterangan :
OP = OPCODE 8 bit yang menerangkan operasi-mikro yang akan
dijalankan
IX = flag indeks yang menunujukkan mode pengalamatan yang
harus digunakan
AD = alamat untuk memori operand 15 bit
• Pengalamatan langsung (direct addressing) yaitu operand
disimpan di dalam M[AD]
• Pengalamatan berindeks (index addressing) yaitu operand
disimpan di dalam M[AD = (X)] dengan bit IX bernilai 1
Penggunaan register-register pada SIC
1. Register A = register yang digunakan untuk proses
perhitungan
2. Register X = register yang digunakan untuk mode
pengalamatan berindex
3. Register PC = register yang menyimpan alamat instruksi
berikutnya
4. Register L = register yang menyimpan alamat asal sebelum
melakukan subroutines
5. Register IR = register yang menyimpan instruksi yang
sedang dikerjakan
6. Register MBR = register yang digunakan untuk proses
masukan atau keluaran data dari memori
7. Register MAR = register yang menyimpan alamat memori
untuk proses pembacaan atau penulisan
8. SW = register yang berisi informasi status relatif terhadap
instruksi sebelumnya
9. C = register yang membangkitkan signal waktu t0, t1, t2, t3
10. INT = register yang menentukan apakah signal interrupt
telah diterima
11. F = register yang digunakan dalam proses”siklus fetch’
12. E = register khusus yang digunakan dalam proses “siklus
eksekusi’
13. S = register yang akan mengaktifkan register C
Kumpulan Instruksi SIC
Ada 21 instruksi SIC yang digunakan, dimana pada instruksi ini
m menunjukkan address memori dari operand dan (m)
menunjukkan nilai yang disimpan pada address memori tersebut.
Opcode instruksinya ditulis dalam notasi heksadesimal.
• JSUB dan RSUB merupakan dua instruksi yang berhubungan
dengan subrutin. JSUB menyimpan PC saat ini ke L dan
kemudian melompat ke subrutin dengan menyimpan operand
ke PC. RSUB kembali dari subrutin dengan melompat ke lokasi
yang dinyatakan oleh L.
• Instruksi TD digunakan untuk menguji piranti I/O sebelum
berusaha untuk membaca dari atau menulis ke piranti
tersebut.Hasil pengujian tersebut disimpan di dalam kode
kondisi (condition code), field CC, pada SW. Panjang field ini 2
bit dan digunakan untuk mewakili salah satu dari tiga nilai <,
=, >
Jika instruksi TD dijalankan, nilai field CC aka di-set menurut
kode berikut :
< menunjukkan bahwa piranti telah siap
= menunjukan bahwa piranti sedang sibuk dan tidak dapat
digunakan pada saat itu
> menunjukkan bahwa piranti tidak beroperasi
• Instruksi COMP digunakan juga untuk men-set field CC. Nilai
yang disimpan field CC setelah sebuah instruksi COMP setelah
sebuah instruksi COMP menggambarkan hubungan antara A
dan operand instruksi
• Instruksi IRT digunakan oleh interrupt handler agar
menyebabkan lompatan kembali ke tempat dimana CPU
berada sebelum intrupsi terjadi.
Jika interupsi terjadi, CPU akan menyimpan PC saat ini ke
dalam memori pada address 0.
Untuk kembali dari sebuah interupsi , isi dari alamat memori
ini harus di-load kembali ke dalam PC.
• Instruksi-instruksi lainnya adalah operasi aritmatika dan
logika, transfer dari pengendalian(jump), loading register,
storing register atau membaca dan menulis ke piranti I/O.


Advertisements

EVOLUSI ARSITEKTUR KOMPUTER


Perkembangan Arsitektur Komputer

Arsitektur komputer  dapat didefinisikan dan dikategorikan sebagai ilmu dan sekaligus seni mengenai cara interkoneksi komponen-komponen perangkat keras untuk dapat menciptakan sebuah komputer yang memenuhi kebutuhan fungsional, kinerja, dan target biayanya. Dalam bidang teknik komputer, arsitektur komputer adalah konsep perencanaan dan struktur pengoperasian dasar dari suatu sistem komputer. Arsitektur komputer ini merupakan rencana cetak-biru dan deskripsi fungsional dari kebutuhan bagian perangkat keras yang didesain (kecepatan proses dan sistem interkoneksinya). Dalam hal ini, implementasi perencanaan dari masing–masing bagian akan lebih difokuskan terutama, mengenai bagaimana CPU akan bekerja, dan mengenai cara pengaksesan data dan alamat dari dan ke memori cache, RAM, ROM, cakram keras, dll).
Di antara demikian banyak pemahaman tentang arsitektur, arsitektur dikenal juga sebagai suatu tradisi yang berkembang. Dari waktu ke waktu wajah arsitektur selalu mengalami perubahan. Hal-hal yang mempengaruhi perkembangan dan pengembangan arsitektur tidak hanya berupa keadaan eksternal, tetapi juga keadaan internal. Disini kita membahas mengenai evolusi arsitektur pada komputer. Arsitektur dari komputer sendiri merupakan suatu susunan atau rancangan dari komputer tersebut sehingga membentuk suatu kesatuan yang dinamakan komputer. Komputer sendiri berevolusi dengan cepat mulai dari generasi pertama hingga sekarang. Evolusi sendiri didasarkan pada fungsi atau kegunaanya dalam kehidupan. Evolusi pada komputer sendiri ada karena keinginan atau hal yang dibutuhkan manusia itu sendiri. Sekarang ini komputer sudah dapat melakaukan perintah yang sulit sekalipun tidak seperti dulu yang hanya bisa melakukan yang sederhana saja. Itulah yang dinamakan evolusi arsitektur yaitu perubahan bentuk juga fungsi dan kemampuannya.

KLASIFIKASI ARSITEKTUR KOMPUTER

1.    Arsitektur Von Neumann

2.    Arsitektur RISC
·         Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC
·         Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control
·         Penggunaan mode pengalamatan sederhana, hampir sama dengan instruksi menggunakan pengalamatan register.
·         Penggunaan format-format instruksi sederhana, panjang instruksinya tetap dan disesuaikan dengan panjang word.

3.    Arsitektur CISC
·         Sarat informasi memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat
·         Dimaksudkan untuk meminimumkan jumlah perintah yang diperlukan untuk mengerjakan pekerjaan yang diberikan. (Jumlah perintah sedikit tetapi rumit) Konsep CISC menjadikan mesin mudah untuk diprogram dalam bahasa rakitan.

4.    Arsitektur Harvard

5.    Arsitektur Blue Gene


Arsitektur von Neumann (atau Mesin Von Neumann) adalah arsitektur yang diciptakan oleh John von Neumann (1903-1957). Arsitektur ini digunakan oleh hampir semua komputer saat ini. Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, “bus”.

sistem-komputer

Pada perkembangan komputer modern, setiap prosesor terdiri dari atas :

Arithmetic and Logic Unit  (ALU)
Arithmatic and Logic Unit atau Unit Aritmetika dan Logika berfungsi untuk melakukan semua perhitungan aritmatika (matematika) dan logika yang terjadi sesuai dengan instruksi program. ALU menjalankan operasi penambahan,  pengurangan, dan operasi-operasi sederhana lainnya pada input-inputnya dan memberikan hasilnya pada register output.

Register
Register merupakan alat penyimpanan kecil yang  mempunyai kecepatan akses cukup tinggi, yang  digunakan untuk menyimpan data dan instruksi yang  sedang diproses, sementara data dan instruksi lainnya yang menunggugiliran untukdiproses masihdisimpan yang menunggugiliran untukdiproses masihdisimpan di dalam memori utama. Setiap register dapat menyimpan satu bilangan hingga mencapai jumlah maksimum tertentu tergantung pada ukurannya.

Control Unit
Control Unit atau Unit Kontrol berfungsi untuk mengatur dan mengendalikan semua peralatan yang ada pada sistem komputer. Unit kendali akan mengatur kapan alat input  menerima data dan kapan data diolah serta kapan ditampilkan pada alat output. Unit ini juga mengartikan instruksi-instruksi dari program. Unit ini juga mengartikan instruksi-instruksi dari program komputer, membawa data dari alat input ke memori utama dan mengambil data dari memori utama untuk diolah. Bila ada instruksi untuk perhitungan aritmatika atau  perbandingan logika, maka unit kendali akan mengirim  instruksi tersebut ke ALU. Hasil dari pengolahan data  dibawa oleh unit kendali ke memori utama lagi untuk  disimpan, dan pada saatnya akan disajikan ke alat output.

Bus
Bus adalah sekelompok lintasan sinyal yang digunakan untuk menggerakkan bit-bit informasi dari satu tempat ke tempat lain, dikelompokkan menurut fungsinya Standar bus dari suatu sistem komputer adalah bus alamat (address bus), bus data (data bus) dan bus kontrol (control bus). Komputer menggunakan suatu bus atau saluran bus sebagaimana kendaraan bus yang mengangkut penumpang dari satu tempat ke tempat lain, maka bus komputer mengangkut data. Bus komputer menghubungkan CPU pada RAM dan periferal. Semua komputer menggunakan saluran busnya untuk maksud yang sama.
RICS singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya. Reduced Instruction Set Computing (RISC) atau “Komputasi set instruksi yang disederhanakan” pertama kali digagas oleh John Cocke, peneliti dari IBM di Yorktown, New York pada tahun 1974 saat ia membuktikan bahwa sekitar 20% instruksi pada sebuah prosesor ternyata menangani sekitar 80% dari keseluruhan kerjanya. Komputer pertama yang menggunakan konsep RISC ini adalah IBM PC/XT pada era 1980-an. Istilah RISC sendiri pertama kali dipopulerkan oleh David Patterson,pengajar pada University of California di Berkely.






















RISC, yang jika diterjemahkan berarti “Komputasi Kumpulan Instruksi yang Disederhanakan”, merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor.
Selain digunakan dalam komputer vektor, desain ini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapa mikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC, R4x00 dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine. Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan UltraSPARC dari Sun Microsystems, serta PA-RISC dari Hewlett-Packard.

Karakteristik RISC
Karakteristik-Karakteristik Eksekusi Instruksi
Salah satu evolusi komputer yang besar adalah evolusi bahasa pemprograman. Bahasa pemprograman memungkinkan programmer dapat mengekspresikan algoritma lebih singkat, lebih memperhatikan rincian, dan mendukung penggunaan pemprograman terstruktur, tetapi ternyata muncul masalah lain yaitu semantic gap, yaitu perbedaan antara operasi-operasi yang disediakan oleh HLL dengan yang disediakan oleh arsitektur komputer, ini ditandai dengan ketidakefisienan eksekusi, program mesin yang berukuran besar,dan kompleksitas kompiler.
Untuk mengurangi kesenjangan ini para perancang menjawabnya dengan arsitektur. Fitur-fiturnya meliputi set-set instruksi yang banyak, lusinan mode pengalamatan, dan statemen –statemen HLL yang diimplementasikan pada perangkat keras.

Operasi
Beberapa penelitian telah menganalisis tingkah laku program HLL (High Level Language). Assignment Statement sangat menonjol yang menyatakan bahwa perpindahan sederhana merupakan satu hal yang penting. Hasil penelitian ini merupakan hal yang penting bagi perancang set instruksi mesin yang mengindikasikan jenis instruksi mana yang sering terjadi karena harus didukung optimal.

Operand
Penelitian Paterson telah memperhatikan [PATT82a] frekuensi dinamik terjadinya kelaskelas variabel. Hasil yang konsisten diantara program pascal dan C menunjukkan mayoritas referensi menunjuk ke variable scalar. Penelitian ini telah menguji tingkah laku dinamik program HLL yang tidak tergantung pada arsitektur tertentu. Penelitian [LUND77] menguji instruksi DEC-10 dan secara dinamik menemukan setiap instruksi rata-rata mereferensi 0,5 operand dalam memori dan rata-rata mereferensi 1,4 register. Tentu saja angka ini tergantung pada arsitektur dan kompiler namun sudah cukup menjelaskan frekuensipengaksesan operand sehingga menyatakan pentingnya sebuah arsitektur.

Procedure Calls
Dalam HLL procedure call dan return merupakan aspek penting karena merupakan operasi yang membutuhkan banyak waktu dalam program yang dikompalasi sehingga banyak berguna untuk memperhatikan cara implementasi opperasi ini secara efisien. Adapun aspeknya yang penting adalah jumlah parameter dan variabel yang berkaitan dengan prosedur dan kedalaman pensarangan (nesting).
Complex instruction-set computing atau Complex Instruction-Set Computer (CISC) “Kumpulan instruksi komputasi kompleks”) adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.
Sebelum proses RISC didesain untuk pertama kalinya, banyak arsitek komputer mencoba menjembatani celah semantik”, yaitu bagaimana cara untuk membuat set-set instruksi untuk mempermudah pemrograman level tinggi dengan menyediakan instruksi “level tinggi” seperti pemanggilan procedure, proses pengulangan dan mode-mode pengalamatan kompleks sehingga struktur data dan akses array dapat dikombinasikan dengan sebuah instruksi. Karakteristik CISC yg “sarat informasi” ini memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat.
Memang setelah itu banyak desain yang memberikan hasil yang lebih baik dengan biaya yang lebih rendah, dan juga mengakibatkan pemrograman level tinggi menjadi lebih sederhana, tetapi pada kenyataannya tidaklah selalu demikian. Contohnya, arsitektur kompleks yang didesain dengan kurang baik (yang menggunakan kode-kode mikro untuk mengakses fungsi-fungsi hardware), akan berada pada situasi di mana akan lebih mudah untuk meningkatkan performansi dengan tidak menggunakan instruksi yang kompleks (seperti instruksi pemanggilan procedure), tetapi dengan menggunakan urutan instruksi yang sederhana.
Istilah RISC dan CISC saat ini kurang dikenal, setelah melihat perkembangan lebih lanjut dari desain dan implementasi baik CISC dan CISC. Implementasi CISC paralel untuk pertama kalinya, seperti 486 dari Intel, AMD, Cyrix, dan IBM telah mendukung setiap instruksi yang digunakan oleh prosesor-prosesor sebelumnya, meskipun efisiensi tertingginya hanya saat digunakan pada subset x86 yang sederhana (mirip dengan set instruksi RISC, tetapi tanpa batasan penyimpanan/pengambilan data dari RISC). Prosesor-prosesor modern x86 juga telah menyandikan dan membagi lebih banyak lagi instruksi-instruksi kompleks menjadi beberapa “operasi-mikro” internal yang lebih kecil sehingga dapat instruksi-instruksi tersebut dapat dilakukan secara paralel, sehingga mencapai performansi tinggi pada subset instruksi yang lebih besar.

Karakteristik CISC
Arsitektur Havard menggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak  diperlukan multiplexing  alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakanorganisasiinternal yang  berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika dan data, tetapi juga menyediakan organisasi internal yang  berbeda sedemikian rupa instruksi dapaLebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda  dari bus alamat. Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat.t diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Sebagai contoh, mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data.  Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.

Blue Gene adalah sebuah arsitektur komputer yang dirancang untuk menciptakan beberapa superkomputer generasi berikut, yang dirancang untuk mencapai kecepatan operasi petaflop (1 peta = 10 pangkat 15), dan pada 2005 telah mencapai kecepatan lebih dari 100 teraflop (1 tera = 10 pangkat 12). Blue Gene merupakan proyek antara Departemen Energi Amerika Serikat (yang membiayai projek ini), industri (terutama IBM), dan kalangan akademi. Ada lima projek Blue Gene dalam pengembangan saat ini, di antaranya adalah Blue Gene/L, Blue Gene/C, dan Blue Gene/P.
Komputer pertama dalam seri Blue Gene. Blue Gene/L dikembangkan melalui sebuah “partnership” dengan Lawrence Livermore National Laboratory menghabiskan biaya AS$100 juta dan direncanakan dapat mencapai kecepatan ratusan TFLOPS, dengan kecepatan puncak teoritis 360 TFLOPS. Ini hampir sepuluh kali lebih cepat dari Earth Simulator, superkomputer tercepat di dunia sebelum Blue Gene. Pada Juni 2004, dua prototipe Blue Gene/L masuk dalam peringkat 500 besar superkomputer berada dalam posisi ke-4 dan ke-8.
Pada 29 September 2004 IBM mengumumkan bahwa sebuah prototipe Blue Gene/L di IBM Rochester (Minnesota) telah menyusul Earth Simulator NEC sebagai komputer tercepat di dunia, dengan kecepatan 36,01 TFLOPS, mengalahkan Earth Simulator yang memiliki kecepatan 35,86 TFLOPS. Mesin ini kemudian mencapai kecepatan 70,72.
Pada 24 Maret 2005, Departemen Energi AS mengumumkan bahwa Blue Gene/L memecahkan rekor komputer tercepat mencapai 135,5 TFLOPS. Hal ini dimungkinkan karena menambah jumlah rak menjadi 32 dengan setiap rak berisi 1.024 node komputasi. Ini masih merupakan setengah dari konfigurasi final yang direncanakan mencapai 65.536 node.
Pada 27 Oktober, 2005, Lawrence Livermore National Laboratory dan IBM mengumumkan bahwa Blue Gene/L sekali lagi telah menciptakan rekor dengan mengalahkan rekornya sendiri setelah mencapai kecepatan 280.6 TFLOPS.


Referensi :
–         https://fajarhidayat513.wordpress.com/2016/09/29/evolusi-arsitektur-komputer/
–         http://tergesa.blogspot.com/2012/02/sejarah-evolusi-dan-kinerja-komputer.html
–         http://www.scribd.com/doc/97383983/40/Klasifikasi-Feng-KLASIFIKASI-FENG
–         http://diaz9895.blogspot.com/2011/11/kualitas-arsitektur-komputer.html
–         http://next-timexxxx.blogspot.com/2011/10/organisasi-dan-arsitektur-komputer.html
–         http://www.scribd.com/doc/52467855/DEFINISI-ORGANISASI-KOMPUTER

Arsitektur Family ibm PC dan Turunannya

IBM PC IBM PC  adalah sebutan untuk keluarga  komputer pribadi  buatan  IBM . IBM PC diperkenalkan pada 12 Agustus 1981, dan "dipens...